In modern clinical surgery, advancements in tissue dissection and hemostatic technologies are key to improving safety and efficiency. The application of large vessel sealing systems, combined with dedicated surgical instruments, has significantly enhanced procedural outcomes and represents a major technological breakthrough in the field.
Large vessel sealing systems use real-time feedback and intelligent energy platforms to deliver high-frequency current with consistent pressure at the jaws. This causes collagen and elastin in vessel walls to denature and fuse, forming a clear, permanent seal. The system can seal vessels up to 7mm in diameter, requires minimal dissection, offers fast activation, produces no surgical smoke, and minimizes thermal spread to surrounding tissues.
Due to high technical barriers, few companies have achieved true innovation in this domain. ShouLiang-med’s SL100M large vessel sealing system is a leading example. Equipped with proprietary tissue-sensing technology, it continuously monitors tissue impedance to precisely adjust energy output, ensuring safe, efficient, and complete sealing of vessels under 7mm.
Relevant literature indicates that Wu Zeyu et al.[1] applied large vessel sealing system in radical gastrectomy and found that major gastric vessels, including the left gastric artery and gastroduodenal artery, could be transected using the sealing system without suture ligation. Wu Baoqiang et al.[2] found that large vessel sealing system applied in surgery for benign thyroid diseases could simplify the surgical procedure, reduce operative time, and decrease intraoperative blood loss. A systematic review was performed on seven randomized controlled trials by Janssen et al.[3], its results show that large vessel sealing system is more effective than other electrosurgical or ultrasonic devices in reducing intraoperative bleeding and shortening operative time.
In conventional partial small intestine resection, mesenteric vessels must be dissected and ligated. The mesentery contains a dense vessel network with numerous delicate branches that are prone to bleeding. Both ends of the intestine must be clamped before transection. Directly transecting mesentery with large vessel sealing system avoids repeated dissection and ligation of vessels, simplifying the surgical procedure. Furthermore, using large vessel sealing system to directly transect the intestine prevents intestinal leakage, which helps to shorten the operative time.
In conclusion, using large vessel sealing system in partial small intestine resection could simplify the procedure, shorten operative time, and reduce bleeding.
References:
[1]Wu Zeyu, Yao Yuan, Wan Jin, et al. Application of LigasureTM vessel sealing system in radical D2 surgery for gastric cancer[J]. Chinese Journal of Gastrointestinal Surgery,2008,11 ( 2 ) :184 - 185.
[2]Wu Baoqiang, Chen Weibo, Jiang Yong, et al. Application of LigaSure vessel sealing system in surgery for benign thyroid diseases [J]. Chinese Journal of General Surgery, 2016, 25 ( 11) :1585 - 1589.
[3] JANSSEN P F,BRLMANN H A,HUIRNE J A. Effectiveness of electrothermal bipolar vessel - sealing devices versus other electrothermal and ultrasonic devices for abdominal surgical hemostasis: a systematic review[J]. Surg Endosc,2012,26( 10) : 2892 - 2901.